A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon.

نویسندگان

  • Madoka Yoshida
  • Keiko Kashiwagi
  • Ai Shigemasa
  • Shiho Taniguchi
  • Kaneyoshi Yamamoto
  • Hideki Makinoshima
  • Akira Ishihama
  • Kazuei Igarashi
چکیده

We reported previously that the synthesis of specific proteins such as OppA, Cya, and RpoS (sigma(38)), which are important for cell growth and viability, is stimulated by polyamines at the level of translation. In this study we found that the synthesis of FecI and Fis was also stimulated by polyamines at the level of translation. The FecI and Fis proteins enhance the expression of mRNAs that are involved in iron uptake and energy metabolism and the expression of rRNA and some tRNAs. The Shine-Dalgarno (SD) sequence of their mRNAs was not obvious or was not located at the usual position. When the SD sequences were created at the normal position on these mRNAs, protein synthesis was no longer influenced by polyamines. Thus, the common characteristic of these mRNAs was to have a weak or ineffective SD sequence. We propose that a group of genes whose expression is enhanced by polyamines at the level of translation be referred to as a "polyamine modulon." By DNA microarray, we found that 309 of 2,742 mRNA species were upregulated by polyamines. Among the 309 up-regulated genes, transcriptional enhancement of at least 58 genes might be attributable to increased levels of the transcription factors Cya, RpoS, FecI, and Fis, which are all organized in the polyamine modulon. This unifying molecular mechanism is proposed to underlie the physiological role of polyamines in controlling the growth of Escherichia coli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unifying Model for the Role of Polyamines in Bacterial Cell Growth, the Polyamine Modulon*□S

We reported previously that the synthesis of specific proteins such as OppA, Cya, and RpoS ( ), which are important for cell growth and viability, is stimulated by polyamines at the level of translation. In this study we found that the synthesis of FecI and Fis was also stimulated by polyamines at the level of translation. The FecI and Fis proteins enhance the expression of mRNAs that are invol...

متن کامل

Enhancement of the synthesis of RpoN, Cra, and H-NS by polyamines at the level of translation in Escherichia coli cultured with glucose and glutamate.

Proteins whose synthesis is enhanced by polyamines at the level of translation were identified in a polyamine-requiring mutant cultured in the presence of 0.1% glucose and 0.02% glutamate instead of 0.4% glucose as an energy source. Under these conditions, enhancement of cell growth by polyamines was almost the same as that in the presence of 0.4% glucose. It was found that synthesis of RpoN, C...

متن کامل

Three Members of Polyamine Modulon under Oxidative Stress Conditions: Two Transcription Factors (SoxR and EmrR) and a Glutathione Synthetic Enzyme (GshA)

Members of polyamine modulon whose synthesis is enhanced at the level of translation were looked for under oxidative stress conditions caused by 0.6 μM K2TeO3. When an Escherichia coli polyamine-requiring mutant MA261 was cultured in the presence of K2TeO3, the degree of polyamine stimulation of cell growth was greater than in cells cultured in the absence of K2TeO3. Under these conditions, syn...

متن کامل

Ribosome modulation factor, an important protein for cell viability encoded by the polyamine modulon.

We searched for proteins whose synthesis is enhanced by polyamines at the stationary phase of cell growth using an Escherichia coli polyamine-requiring mutant in which cell viability is greatly decreased by polyamine deficiency. The synthesis of ribosome modulation factor (RMF) was strongly enhanced by polyamines at the level of translation at the stationary phase of cell growth. In rmf mRNA, a...

متن کامل

Impact of Exogenous Spermine Application on the Vase Life of Cut Rose Flowers ‘Dolce Vita’

Senescence is an integral part of the normal developmental cycle of plants and can be traced in cell, tissue and organ level. This work was focused on the efficiency of post-harvest treatment with the free polyamine spermine (Spm) to extend the vase life of cut rose flowers as an anti-senescence compound. Spm treatment was applied at the rates of 0, 1, 2 and 4 mM. Some morphological, biochemica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 44  شماره 

صفحات  -

تاریخ انتشار 2004